
JOURNAL OF MATERIALS SCIENCE 29 (1994) 1601-1611 

Numerical simulation of semi-crystalline 
nylon 6: elastic constants of crystalline 
and amorphous parts 

K. J. HSIA, Y.-B.  XIN 
Department of Theoretical and Applied Mechanics, University of Illinois at Urbana- Champaign, 
Urbana, IL 61801, USA 

L. L IN*  
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 
MA 02139, USA 

The elastic responses of crystalline and amorphous parts in semi-crystalline nylon 6 have been 
determined by computer simulation using the finite element method. Semi-crystalline nylon 6 has 
been modelled as a composite consisting of alternating layers of lamellar crystals and amorphous 
regions. Full morphological details identified previously by Lin and Argon in highly textured nylon 
6 bulk samples have been incorporated in the model. An optimization scheme has been 
employed to search systematically for the individual components' elastic constants which give rise 
to a composite elastic behaviour as that measured by Lin and Argon. A two-dimensional 
plane strain finite element analysis has been performed to evaluate the composite elastic 
behaviour for a given set of constituents' elastic constants. The resulting elastic constants of 
semi-crystalline nylon 6 for the optimized values of crystalline and amorphous elastic properties 
were within 6% average error with the experimental data. The computations also revealed that 
a high stress concentration exists in the crystalline region. Therefore, experimental measurements 
of plastic resistance may represent a significant underestimate of the intrinsic critical resolved 
shear strength of polymer crystals. 

l .  I n t r o d u c t i o n  
Elastic properties of semi-crystalline polymers 
have been of interest to researchers for decades [1-4], 
simply because they are parameters of first-order 
importance in characterizing the mechanical beha- 
viours of these materials. It is well known that poly- 
mers possess anisotropic mechanical properties after 
a large-deformation process, such as drawing, rolling 
or compression. The anisotropic macroscopic behavi- 
ours can be attributed to the texture or orientation 
distribution of molecules, developed during the de- 
formation, and the intrinsically different bonding 
forces between atoms. Along with the new findings 
concerning their microstructures and morphologies, 
deformation mechanisms in semi-crystalline polymers 
are being gradually revealed [5]. Recently, bulk sam- 
ples of semi-crystalline nylon 6, with dual lattice ori- 
entations but in overall orthotropic symmetry and 
with simple and well-defined lamellar morphology in 
near quasi-crystal perfection, were obtained by plane- 
strain compression in a deep channel-die [1]. Taking 
advantage of the large size of these samples, a com- 
plete set of nine elastic constants of highly textured 
nylon 6 were measured by a simple mechanical testing 
technique. Furthermore, different plastic deformation 
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systems in this material were identified, and the cor- 
responding plastic resistances were measured. These 
macroscopic measurements have provided important 
information which is useful in obtaining microscopic 
mechanical properties of both the crystalline and the 
amorphous components of the material. 

In order to interpret the measurements accurately 
and, moreover, to predict the elastic and plastic re- 
sponses of a bulk semi-crystalline polymer of a specific 
texture and morphology, such as those made of 
spherulites, it is crucial to know the mechanical prop- 
erties of both the crystalline part and the amorphous 
part, in addition to a thorough knowledge of the 
texture and morphology of the material. Elastic con- 
stants of polymer crystals have been estimated accord- 
ing to lattice dynamics theory [-6]. An easier but more 
sophisticated method to calculate elastic constants of 
polymer crystals with more complicated structures 
was developed [7] and applied to several semi-crystal- 
line polymers including nylon 6 [8]. However, there 
is very limited experimental information available 
to verify these theoretical calculations [9-11]. For 
the amorphous region of semi-crystalline bulk poly- 
mers, we know not only very little about their mech- 
anical properties [12], but a fundamental issue on 
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how molecules re-enter into lamellar crystals from 
which they emerged is still controversial [13]. 

Despite the insufficiency of information, attempts 
were made to relate macroscopic measurements to 
micro-mechanical properties and morphological de- 
tails of semi-crystalline polymers. An aggregate model, 
proposed by Ward [14], considers polymers as a ran- 
dom aggregate of anisotropic units. Although this 
model is, in principle, only valid for amorphous poly- 
mers, it provides a good first approximation of mech- 
anical properties for semi-crystalline polymers [15, 
16]. On the other hand, the Takayanagi model [17] 
has been widely applied to characterize quantitatively 
highly oriented semi-crystalline polymers. This model 
has been generalized to two-dimensional [18] and, 
recently, three-dimensional [2] cases, and has been 
further modified to analyse shear behaviour [2]. The 
Takayanagi model [17] recognizes the two-phase 
nature of semi-crystalline polymers, but it lumps crys- 
talline regions and amorphous regions into blocks 
joining in series or/and parallel so that it fails to take 
into account the morphological features of the mater- 
ials. A different two-phase model suggested by Kardos 
and co-workers [19, 20] showed that the geometry 
effects and orientation effects of lamellar crystals em- 
bedded in amorphous materials can be very critical, 
and may cause the elastic constants to vary by a factor 
of ten or more. In a multi-step study of polymers with 
spherulitic structures, Wang [21-23] calculated elas- 
tic constants at three different scales (lamellae, 
spherulites, and bulk) with detailed considerations of 
morphology of the materials. One of the principal 
assumptions he made to make the problem tractable 
was local transverse isotropy about the radius of 
spherulites. The composite theories of Hill [24, 5], 
Hermans [26], and a self-consistent approach of 
Kroner [27], Hershey [28] and Kerner [29] were 
applied in Wang's calculations to account for mechan- 
ical interactions between the two phases and between 
individual spherulites. Although an elegant approach, 
Wang's scheme has not been adopted by others, prob- 
ably due to its complexity. Nevertheless, it is very 
difficult to apply Wang's method to solve the inverse 
problem, i.e., to evaluate the micro-mechanical prop- 
erties of individual constituents from macroscopic 
measurements. 

The present communication is an attempt to reveal 
the individual elastic responses of the crystalline part 
and the amorphous part in nylon 6 by computer 
simulation using the finite element method. The par- 
ticular sets of elastic constants for crystalline and 
amorphous parts which result in the elastic response 
of the textured nylon 6 are searched through an op- 
timization scheme. The respective elastic constants for 
crystalline and amorphous parts obtained through 
this simulation are compared with other people's the- 
oretical and experimental studies. Furthermore, plas- 
tic resistance of the material could also be studied in 
principle for any given morphology once the critical 
resolved shear strengths in different slip systems are 
known. 

The results of this study demonstrate that morpho- 
logy of semi-crystalline polymers indeed plays an im- 
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portant role in deformation, and must be accounted 
for in evaluating any micro-mechanical properties of 
these materials. 

2. Prob lem f o r m u l a t i o n  
Highly textured, semi-crystalline nylon 6 is modelled 
as a composite consisting of a crystalline part and an 
amorphous part, each with its own elastic properties. 
The objective is to find the set of elastic constants for 
crystalline and amorphous parts which give rise to the 
composite elastic behaviour of nylon 6 as that meas- 
ured by experiments, particularly by Lin and Argon 
[1] because high-quality textured materials obtained 
by plane-strain channel-die compression were used in 
their tests. The elastic constants of the constituents are 
systematically guessed through an algorithm to be 
discussed in the next section, and the composite's 
elastic response will be calculated and compared with 
the experimental data until they match each other. 
The finite element method was used to calculate the 
composite elastic response for a given set of constitu- 
ent elastic constants. The finite element software 
ABAQUS [30] was employed in the calculation. 

2.1. Basic model  configurat ion 
Through small-angle X-ray scattering measurements, 
Lin and Argon [1] concluded that in textured nylon 6, 
obtained by plane-strain channel-die compression to 
a compression ratio of 3.8-4.0, the monoclinic lamel- 
lae are straight in the constrained direction (CD) but 
are S (or arc)-shaped with continuously varying thick- 
ness along the loading direction (LD), Fig. 1. For 
simplicity, a two-dimensional configuration is con- 
sidered in the current model. We take a representative 
layer in the plane of loading direction (LD) and flow 
direction (FD) (see Fig. 1), on which the alternating 
crystalline and amorphous, wavy-shaped monoclinic 
lamellae are exposed. The basic configuration used in 
this study is shown in Fig. 2, where 1 is the loading 
direction and 2 the flow direction (note this is different 
from the coordinate system used by Lin and Argon 
r l ] ) .  

The wavy monoclinic lamellae are approximated by 
sine curves. Although a few other mathematical func- 
tions can be used to approximate the S-shaped lamel- 
lae, it is expected that the difference in final results 
would be insignificant. Besides, in real textured poly- 
mers, though the morphology of lamellae is in general 
S-shaped, one expects to find few, if any, large lamellae 
with purely periodic shape of any mathematical func- 
tion. Therefore, sine function is a simple, but reason- 
able approximation to the S-shaped morphology of 
highly textured polymers. 

The middle part of the model is the alternating 
crystalline and amorphous, monoclinic lamellae. The 
crystallinity of the lamellae is 43.4% which is the same 
as the experimentally measured value for a compres- 
sion ratio of 4.0 by Lin and Argon [1]. For the 
convenience of computation, the model is filled up to 
a rectangular shape. Following the arguments of 
a self-consistent method, the elastic property of the 
filled portion (top and bottom regions of the model) is 
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Figure 1 Morphology of textured nylon 6 after deep channel-die 
compression to a compression ratio of 3.8-4.0: (a) lamellae orienta- 
tions; (b) lattice orientations. 
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Figure 2 Model used in the current study showing the alternative 
crystalline and amorphous parts in the middle, and the composite to 
fill up the rectangular configuration. 

taken to possess the composite property from Lin and 
Argon's experimental measurement [1]. The finite ele- 
ment mesh for this model is shown in Fig. 3. Plane 
strain eight-node biquadratic elements with reduced 
integration points are used. The theory of small defor- 
mation is employed in the calculation. 

It was found that nylon 6 crystals in the textured 
material were predominantly in monoclinic ~ form, 
and its (2 0 0) planes are statistically equally divided 
and oriented with their normals in the directions of 
_+ 21 ~ with respect to the constrained direction. 

Therefore, the elastic property of the crystalline part in 

textured nylon 6 is orthotropic with principal direc- 
tions along LD, FD and CD. On the other hand, the 
amorphous part has a transverse isotropic elastic 
property with its symmetry axis normal to the plane of 
lamellae. Because the principal axes of the crystalline 
and the amorphous parts coincide, the lamellae elastic 
response exhibits orthotropic symmetry with nine: in- 
dependent elastic constants, as was shown by Lin and 
Argon's measurement [1]. In the current study, the 
elastic response of the crystalline part is assumed to 
obey Hooke's law, as 
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where S~j are the components of compliance matrix of 
the crystalline part with nine independent compo- 
nents, 0.u and e u are stress and strain components, 
respectively. Whereas the 
amorphous part obeys 
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where the number of independent components is five 
for the transverse isotropic symmetry with the sym- 
metry axis along the 2-direction. The stiffness matrices 
can be obtained by inverting the compliance matrices. 
For the plane strain deformation considered here, the 
constants S~4, S~5 of the crystalline part, and 
S]4 = S~6, S~5 = 2(S]a - S]3) of the amorphous 
part will not affect the in-plane elastic response. 
Therefore, they cannot be determined by the current 
simulation. A complete three-dimensional analysis 
must be performed to obtain these constants, though 
S]4 and S~5 are not independent material constants in 
this case. 

To obtain the composite elastic constants, three 
different loadings are applied: plane strain tension in 
the 1 direction, 0. ~1 ; plane strain tension in the 2 direc- 
tion, 0.~2; and a simple shear stress, 0. ~2. In all three 
cases, the magnitude of the applied stress is 1 MPa 
which is well within the elastic range for this material 
(typical yield strength of this material is found to be 
15-30 MPa). The deformation under this stress level is 
small enough so that linear theory is adequate. To 
calculate the global strains corresponding to the ap- 
plied stresses, the average strain is calculated using the 
average displacements at the edges of the mesh. ]For 
the tensile loadings, to avoid the distortion caused by 
the wavy lamellae, the displacements of the nodes on 
the edges (Fig. 3) are constrained such that the nodes 
on the left edge and that on the right edge have the 
same respective displacements in the 1 direction, 
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Figure 3 The finite element mesh of this model. 

whereas those on the top and bottom edges have the 
same respective displacements in the 2 direction. 

2.2. Typical f inite element result 
In order to check whether the wavy shaped finite 
element mesh has any effects on the numerical results 
for even a homogeneous media, we first assigned the 
elastic property of the composite (experimentally 
measured values) to all elements, and calculated the 
global elastic response. The results show that the wavy 
mesh has no effects on the behaviour of a homogen- 
eous material. The elastic property of individual ele- 
ments can be completely recovered at the global level. 

For  a composite consisting of crystalline and 
amorphous parts, typical deformed finite element 
meshes under the applied tensile and shear stresses are 
shown in Fig. 4a-c. The solid lines represent the 
displaced mesh, and the broken lines are the original 
mesh before deformation. To visualize the deforma- 
tion more clearly, the displacements in the plots are 
magnified by a factor of 5. It is clear from the figures 
that, to a crude approximation, the deformations un- 
der the tensile stresses are rather uniform throughout 
the whole body; but the deformation under the shear 
stress is not very uniform. 

The stress and strain distributions within the lamel- 
lae are rather complicated due to the nature of the 
wavy lamellae morphology. Fig. 5a and b show the 
von Mises equivalent stress, oe, and shear stress, o'12 , 
distributions, respectively, under globally applied c~ ~1. 
It is noted that even under the uniform global tensile 
stress, there will be substantial shear stresses in the 
lamellae. The equivalent stress can be as high as 
5 MPa at some locations in the crystalline part, and 
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the shear is more than 1 MPa at some locations, 
although the applied far field stress is only 1 MPa. 
This feature will no doubt affect the plastic resistance 
of semi-crystalline polymers. We will discuss it further 
later in this paper. 

3. Optimization techniques 
As mentioned before, the objective of this work was to 
find the set of elastic constants for crystalline and 
amorphous parts which will result in the same com- 
posite elastic response as that measured by Lin and 
Argon [1]. During the calculation, for each step, the 
elastic constants of the crystalline and the amorphous 
part are modified, the resultant elasticity matrix of the 
composite will be evaluated which, for our plane 
strain configuration, yields four components of the 
stiffness matrix: C l l  , C12 , C22 , and C66. The follow- 
ing objective function is then constructed to measure 
the "closeness" between the simulated elastic response 
and the experimentally measured elastic response of 
semi-crystalline nylon 6 

F ( C l l ,  C12, C22, C66) = ( C l l  - C~1)  2 

-[- (C12 - C~2)  2 -~ (C22 - C~2)  2 

@ (C66 -- C~6)  2 (3) 

where C]1 = 12.7733 GPa, C]2 = 12.4236 GPa, 
C~2 = 19.0171 GPa, and C~6 = 0.51125 GPa  are ex- 
perimentally measured values which are listed in 
Table I. The function F is chosen not only because it is 
simple and is the most commonly used objective func- 
tion in optimization problems, but also due to the 
physical interpretation of this function. The function 
usually represents residual strain energy of the body if 



its variables were Stress or strain components. Appar- 
ently, the objective now becomes to search for the 
constituent elastic constants which minimize the func- 
tion F, which is a typical multi-variable optimization 
problem. 

For the plane strain problem, the variables to be 
optimized are the components of the compliance 
matrix for the crystalline part S ~ (except S ~4 and S ~ s) 

and the components of the compliance matrix for the 
amorphous part &"j. In our calculation, the initial 
values of the elastic constants for the crystalline part 
are taken from the theoretical calculation by Tashiro 
and Tadakoro [8]. The initial values of the elastic 
constants S]~ and S~2 are taken from the experi- 
mental measurement by Prevorsek e t  al. [31], and the 
initial values of the elastic constants S]2, S]a and 
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Figure 4 The deformed finite e lement meshes  under (a) plane strain tension along the loading direction cr ~%; (b) plane strain tension along 
flow direction c~2;  and (c) s imple shear a~~ ( ) Displaced mesh,  ( - - - )  original mesh. 
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Figure 4 (continued) 

S~6 are taken from the measurement by Lin and 
Argon [1] on the textured material. The value of 
S~2 (measured by Prevorsek et  al. [31]) is fixed during 
optimization (if none of the components is fixed, the 
obvious optimized values would be that both crystal- 
line and amorphous parts possess the composite prop- 
erty, leading to a zero minimum error for function F), 
thus the total number of variables is 11 in this optim- 
ization problem. 

For each step of optimization, the condition of 
non-negative elastic strain energy requires that the 
elasticity matrices must be positive-definite. In other 
words, all components of the stiffness matrices must 
be larger than or equal to zero; the diagonal compon- 
ents of the compliance matrices must be positive, 
whereas the off-diagonal components of the compli- 
ance matrices must be less than or equal to zero. These 
requirements highly restrict the application of con- 
ventional optimization methods based on gradient 
vectors or Hessian matrices. For this specific optim- 
ization problem, we find that Powell's direct search 
method [32], which makes use of the function values 
directly without calculating their derivatives, is pre- 
ferred. By searching in the directions which are mu- 
tually conjugate (according to Powell, optimization 
scheme [32]), the objective function F has been mini- 
mized successfully. 

The values of the objective function, F, as a function 
of step numbers is plotted in Fig. 6. The value de- 
creases rapidly at the beginning, and levels off gradu- 
ally. The final value of F is about 0.68 % of the initial 
value based on the initial guess of constituent elastic 
constants. 

4. Results and discussion 
The calculated values of the four composite elastic 

constants, Cl l ,  C12, C22, and C66 for two-dimen- 
sional configuration using the optimized constituent 
elastic properties are given in Table I, along with the 
experimental results by Lin and Argon [1]. Three of 
our calculated elastic constants, Cl l ,  C12, and C22 , 
match Lin and Argon's experimental data very well. 
Only the shear component C66 differs from the experi- 
mental results with a high percentage error. The ex- 
perimental data show a much lower shear resistance 
than the calculation prediction. It is also noted that 
the shear modulus of textured nylon 6 is more than 
one order of magnitude lower than the corresponding 
Young's modulus, i.e. the material is very "soft" in 
shear. With the objective function defined in Equation 
3, the error sensitivity is based on the absolute error, 
so it is not very sensitive to the relatively small quant- 
ities percentage-wise. Nevertheless, if we take a rel- 
ative error for each component to be a percentage of 
the experimental data, X, as 

I C , 1  - C ,l 1 c 2 2  - 
X --  

C~1 C~2 

IC12 - C]2I 1C66 - C~6I 
C ] 2  C ~ 6  

(4) 

the value of the objective function for a given uniform 
percentage error, X, can be evaluated by 

F ( C l l  , C12  , C22  , C66  ) = 679.6X 2 (5) 

Compared with the final value of function F obtained 
by our calculation (F = 2.18), our relative error is 
equivalent to an "across-the-board" percentage error 
of 5.66% when compared to the experimental 
measurements Ell. Considering the experimental scat- 
tering (see Lin's thesis [33]), this average percentage 
error is considered very acceptable. 
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Contour Values (MPa) 
1 0.0 
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Figure 5 Stress distributions 
(b) contours of shear stress ~12- 

m semi-crystalline nylon 6 under far-field tensile stress erda. (a) Contours of von Mises equivalent stress, ae; 

Table I also shows the experimental data of elastic 
constants measured by Leung et al. [34] at about  
25 ~ (we should point out that in Table IV of Lin and 
Argon [1], the data of Leung et al. [34] at a different 
temperature, - 4 0 ~  were quoted). Our  simulated 
elastic constants are generally higher than their data. 
This could be attributed to two factors. First, the 
crystallinity of their textured material is 39.2% where- 

as we used 43.3% in our simulation. This partly ex- 
plains why our material is stiffer than theirs because 
higher crystallinity usually results in higher tensile 
elastic resistance, although not necessarily higher 
shear resistance. Second, their textured material was 
obtained by uniaxial drawing, and thus possesses 
a different morphology. Their material is transverse 
isotropic with a symmetry axis along the drawing 
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TABLE I Elastic constants of semi-crystalline nylon 6 

Present result Lin and Argon Leung et al. 
[13 [-343 

Cll (GPa) 12.7527 12.7733 7.4625 
C12 (GPa) 11.4107 12.4236 4.9938 
C22 (GPa) 19.5862 19.0171 9.900 
C66 (GPa) 1.3981 0.51125 1.1813 

Note: The crystallinity of the material used by Lin and Argon [1] 
was 43.3%; that of the material used by Leung et al. [34] was 
39.2%, test temperature was 25 ~ 

'~176 t 
300~ 

200 
u. 

100 

0 , i 

0 4 8 
Step 

Figure 6 Values of the objective function, F, after different steps of 
optimization. 

direction (flow direction). Therefore, direct compari- 
son of these two results is somewhat misleading. 

However, if a complete three-dimensional analysis 
were performed, we would be able to predict the 
transverse isotropic behaviours using the complete set 
of nine elastic constants for the crystalline part and 
five elastic constants for the amorphous part for 
a given morphology. Although this information is not 
known, we can still use the nine elastic constants for 
textured orthortropic nylon 6 obtained by Lin and 
Argon [-1] to estimate the five elastic constants of the 
corresponding transverse isotropic material obtained 
by uniaxial drawing as that by Leung et al. [34]. We 
performed a simple analysis to convert the orthotropic 
material behaviour to a transverse isotropic property. 
The basic assumption here is that the lamellae are 
randomly oriented in the plane normal to the drawing 
direction (flow direction), thus the density of (200) 
and (0 0 2) planes along any direction normal to the 
drawing direction must be the same. Based on this 
argument, the five elastic constants of the transverse 
isotropic material were obtained using the nine con- 
stants from Lin and Argon [1] for orthotropic mater- 
ial. Detailed derivations which make use of coordinate 
transformation and averaging techniques are given in 
the Appendix. The resulting five compliance compon- 
ents are listed in Table II and are compared with the 
results by Leung et al. [34] at 25 ~ (we should also 
point out that the compliance components calculated 
in Leung et al. [34] from the stiffness matrix were not 
very accurate. We recalculated them to make sure that 
the compliance matrix is the inverse of the stiffness 
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TABLE II Elastic compliances of transverse isotropic material 

Converted from Lin Leung et al. 1-34] 
and Argon [1] 

$11 (GPa- 1 ) 0.283 0.292 
$12 (GPa -1) - 0.086 - 0.066 
$13 (GPa- 1 ) - 0.150 - 0.162 
Szz (GPa- 1 ) 0.163 0.167 
$66 (GPa- 1) 1.338 0.847 

matrix). The agreement is surprisingly good. Consid- 
ering the fact that the crystallinity of textured material 
by Lin and Argon [1] is slightly higher than that by 
Leung et al. [34] (43.3% in [1] versus 39.2% in [34]), 
the slightly lower values of tensile compliances and the 
slightly higher value of shear compliance of Lin and 
Argon's results are exactly what we should expect. 

The compliance components for the crystalline part 
which minimize the objective function are given in 
Table III. Columns 2 and 3 of Table III are the 
theoretically calculated values by Tashiro and 
Tadokoro [8] and experimentally measured values 
from the crystalline regions by Sakurada and Kaji 
[35], respectively. Our simulation results of the com- 
pliance components are consistently lower than those 
measured by Sakurada and Kaji [35], which indicates 
that the crystalline part is stiffer in both loading and 
flow directions than the material tested by them. Com- 
pared to the theoretical calculation by Tashiro and 
Tadokoro [8], our results have the same trend as that 
predicted by them, although the numerical values are 
different. The prediction of the compliance in the 
loading direction S]I by our simulation is lower than 
their theoretical calculation (stiffer), whereas the com- 
pliances in the flow direction (chain direction) and 
constrained directions are higher than the theoretical 
calculation (softer). More noteworthy is the shear 
compliance for which our simulated value is lower 
than the theoretical calculation by a factor of more 
than 2. Our simulation results for both crystalline 
S~6 and amorphous S~6 seem to be rather low. It is 
unclear to us what the reason could be for this discrep- 
ancy. 

The optimal values of the compliances of the 
amorphous part are given in Table IV. The value of 
S~2 was taken from the experimental data of Prevor- 
sek et al. [-31] as a fixed value, thus thiscompliance 
component was not a free variable during optimiza- 
tion. As expected, the compliance components of the 
amorphous part associated with normal stress and 
strain components, S]1, S~2 and S~3, are notably 
higher than the corresponding components of the 
crystalline part, i.e. the amorphous part has a lower 
resistance in tension. But the shear compliance S ~6 is 
lower than the corresponding compliance for the crys- 
talline part S~6, indicating that the entangled chains 
in the amorphous part can provide more resistance to 
shear deformation than the well-aligned chains with 
predominantly Van der Waals bonding between them 
in the crystalline part. 

One important result of this study is that the mor- 
phology of semi-crystalline polymers plays a crucial 



T A B L E  I I I  Elastic compliances of the crystalline part 

Present result Tashiro and Sakurada and 
Tadadoro [8] a Kaji 1-35] 

S]1 (GPa -1) 0.1973 0.3838 
S~2 (GPa -1) 0.0395 0.0032 
S~a (GPa -1) 0.1969 0.1234 
S]2 (GPa -~) - 0.0166 - 0.0010 
S]3 (GPa 2) -0.01902 -0.1203 
S~3 (GPa -1) -0.00144 -0.0001 
S~6 (GPa -1) 0.2326 0.4195 

0.877 
0.061 
0.877 

a Theoretically calculated. 

TABLE IV Elastic compliances of the amorphous part 

Prevorsek et  al. 1-31] Present result 

S] 1 (GPa - 1) 1.430 1.420 
S~2 (GPa-  1 ) 0.427 0.427 
S~3 (GPa-  1) 1.430 1.420 
S]2 (GPa- 2) - 0.4843 
S]3 (GPa -1) - 0.080 
S~3 (GPa -1) - 0.4843 
S~6 (GPa - I )  0.1409 

role during deformation. Because of the morphology, 
the stress and strain distributions are no longer uni- 
form in either the crystalline region or the amorphous 
region, as clearly demonstrated in Fig. 5a and b. 
Therefore, composite models using blocks of crystal- 
line and amorphous parts with uniform stress or strain 
fields within each block, such as those in Takayanagi- 
type models I-2, 17, 18], would fail to capture the 
deformation characteristics of these materials accur- 
ately. In other words, even if one knew the elastic 
properties of the crystalline and amorphous parts 
completely, it would still be impossible to predict the 
elastic behaviour of lamellae without considering the 
morphology. Fig. 5b shows that even under far-field 
uniform tensile stress cr~, there will still be shear 
stress cy~2 developed in the material. Fig. 5b also 
shows that the magnitude of the shear stress caused by 
far-field tension is nearly equal to (in some regions 
even larger than) the applied tensile stress level, and 
thus cannot be ignored. It is this shear stress which 
would result in plastic slip in the crystalline region, 
thus directly affecting the plastic yielding behaviour of 
semi-crystalline polymers. It should also be noted that 
the stress distribution and stress concentration magni- 
tude in the lamellae will depend on the shape of the 
lamellae, although for the elastic constants considered 
in the current study, the shape effect may not be 
significant. The shape effects on the behaviour of semi- 
crystalline polymers should be explored further in the 
future. 

midity effect, on the crystalline and amorphous parts, 
respectively, provided their effects on semi-crystalline 
nylon 6 are known. A complete understanding of the 
individual behaviour of the crystalline and amorphous 
parts over a range of temperature and humidity will 
provide a powerful tool for predicting the behaviour 
of real engineering polymeric materials. 

It is easy to note that the application of this tech- 
nique is not limited to nylon 6. It can be applied to any 
semi-crystalline polymeric material provided the mor- 
phology and mechanical properties of that material 
are known. Furthermore, sensitivity of mechanical 
response of semi-crystalline polymers to microscopic 
morphological variations can also be easily investig- 
ated by this technique. 

In addition to estimating the elastic properties of 
individual constituents of semicrystalline polymers, 
this technique can also be used to study plastic resist- 
ance of the material and to estimate the critical re- 
solved shear stress. It is noted in Fig. 5a that because 
of the wavy morphology in textured nylon 6, the yon 
Mises equivalent stress at some locations could be 
four to five times higher than the applied far-field 
stress. Like in any composite materials, higher stresses 
always occur in an elastically stiffer constituent which, 
in our case, is the crystalline part. This stress concen- 
tration will result in an apparently lower yield 
strength of the material, thus resulting in an underesti- 
mate of critical resolved shear stresses. 
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Appendix 
The nine elastic compliances for an orthorhombic 
material are known as 

-$11 $12 $13 

$12 $22 $23 

$13 $23 $33 
0 0 0 

0 0 0 

0 0 0 

5. C o n c l u s i o n  compliance tensor Sijk~ by 
We have obtained the elastic constants of the constitu- 
ents of semi-crystalline nylon 6, crystalline and $11 = $11~1,$12 = 

amorphous parts, by computer simulation of a known $22 = SEZZZ, $23 = 
morphology of the material. In principle, we could 
apply this technique to study the two important effects $44 = 4S2323, $55 = 

in polymer deformations, temperature effect and hu- 

0 0 0 

0 0 0 

0 0 0 

$44 0 0 

0 $55 0 

0 0 866 

(A1) 

where the compliance components S,,, are related to 

Sl122~ S13 ~ Sl133 , 

S2233, $33 = $3333 , 

4S3131, S66 = 4S1212 

(A2) 
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Figure A1 Conversion from an orthorhombic material to a transverse isotropic material: (a) orthorhombic semi-crystalline material; 
(b) orientation of a specific lamellae with respect to the global coordinate system. 

In order to obtain the transverse isotropic material 
property with its symmetry axis along the chain direc- 
tion, we assume that the lamellar orientation distribu- 
tion, we assume that the lamellae orientation distribu- 
plane in our case) is random. Thus the density of any 
specific orientation, f(0), is uniform over the range of 
0 = 0-2r~ in the isotropic plane (see Fig. A1 for defini- 
tion of 0), and can be given by 

1 
f(0) - 2rt (A3) 

Then the new transverse isotropic compliance matrix 
[ S ' . ]  is obtained by integrating the orthorhombic 
compliance matrix over 27t in the plane normal to the 
symmetry axis, as 

f? [S~..-] = f(0) [Sm,.,(0)] dO (A4) 

where [Sm,.,(O)] is the compliance matrix of lamellae 
with orientation along the 0 direction. The tensor 
coordinate transformation is used to obtain [S,.,., (0)], 
such that 

S i ' j ' k '  l' = li,ilj,jlk,kll,lSijkl , (A5) 

where ll,j s are direction cosines between i' and j axes, 
and i, j, k, l =  1, 2, 3. 

For the configuration we are considering, i.e. the 
1-3 plane as the isotropic plane, we have, upon per- 
forming the integration A4 

3 1 1 
S i l  = S ; 3  = ~ ( S l l  "t- $33 ) Jr- ~ 5 1 3  -}- ~ S 5 5  

Si3 

(A6a) 

S~2 = S22 (A6b) 

1 
S'~2 = Shs = ~(S23 + Slz)  (A6c) 

1 3 1 
= ~($11 + Saa)+~S13 - ~Sss (A6d) 

1 
$44 = $66 = ~($44 --]- $66 ) (A6e) z 

Using the values of the orthorhombic compliances by 
Lin and Argon [1], we obtained the five elastic com- 
pliances for a transverse isotropic material which are 
given in Table II. 
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